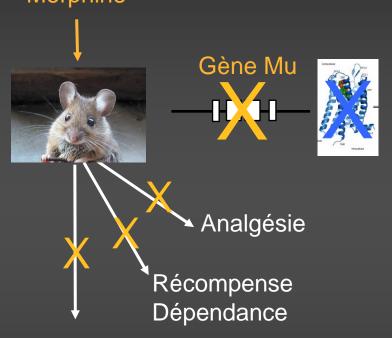
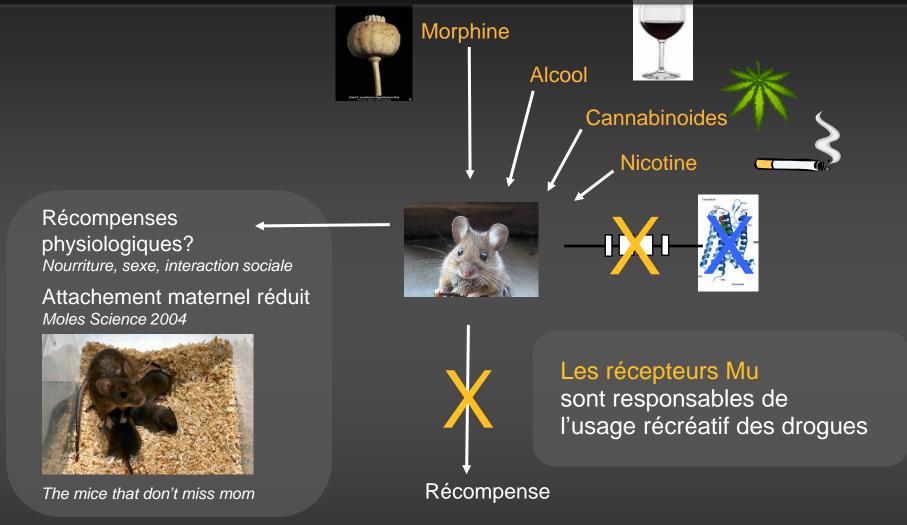
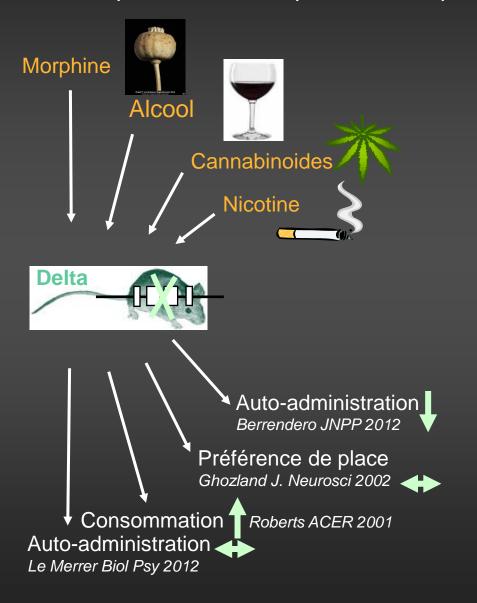

Quel récepteur fait quoi?

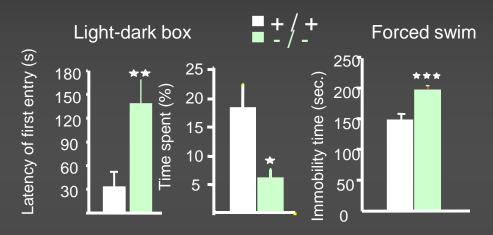



Gènes 85% identiques

Le récepteur mu et la clinique Morphine

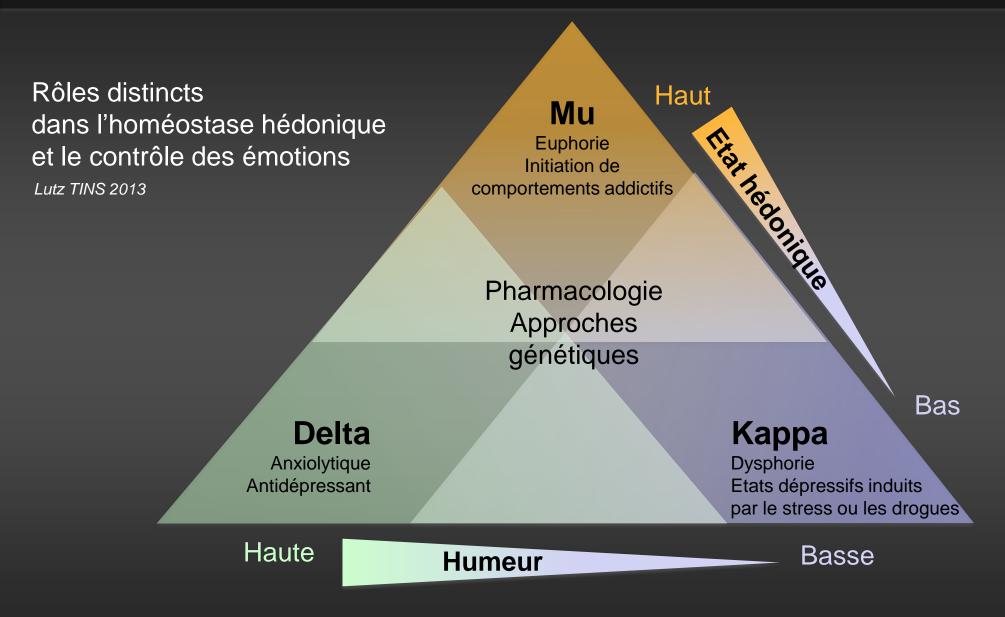
Constipation
Dépression respiratoire
Immunosuppression

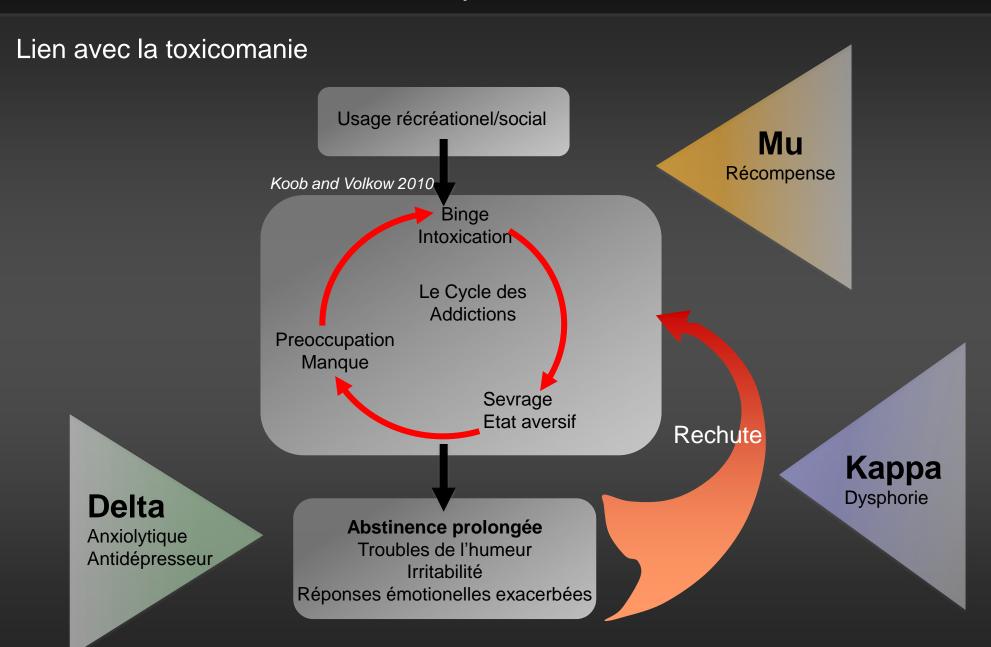

- 1. Le récepteur Mu est essentiel pour l'analgésie morphinique et celle de tous les opiacés utilisés en clinique
- 2. Un seul et même récepteur produit les effets thérapeutiques et les effets indésirables de la morphine Matthes Nature 1996


Les récepteurs Mu sont essentiels pour les processus de récompense: artificiels (drogues) ou naturels (activité sociale)

Les souris KO mu présentent un phénotype de type autistique Becker NPP 2014

Les récepteurs delta receptors ne sont pas essentiels à la récompense


Les récepteurs delta contrôlent les réponses émotionnelles *Filliol et al Nature Genetics 2000*


Mu: phénotype opposé Kappa: pas de phénotype

Delta

- -Activité anxiolytique et antidépressante
- -Delta agonists en essais cliniques pour la dépression Pradhan et al TIPS 2011

Trois cibles distinctes à haut potentiel thérapeutique

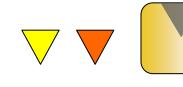
3. Conclusion - opiacés

L'opium soulage la douleur L'opium est euphorisant

Comment

1. De la plante au récepteur

- -Structure atomique des récepteurs résolue Récepteur actif?
- -Criblage in silico pour de nouvelles molécules


2. Pharmacologie moléculaire: les nouveaux espoirs

- -Ligands biaisés pour dissocier effets thérapeutiques des effets néfastes
- -Activation d'effecteurs ciblés dans des réseaux neuronaux sélectionnés

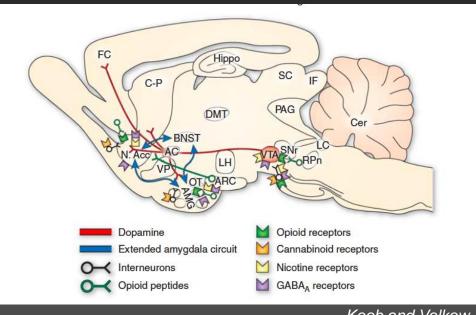
3. Comportement: trois récepteurs – trois fonctions

- -Mu reste le récepteur majeur pour l'analgésie et l'euphorie
- -Agonistes delta et antagonistes kappa ont un potentiel antidépresseur

4. Toxicomanie

Récepteurs-transporteurs

Mu opioïde: récompense

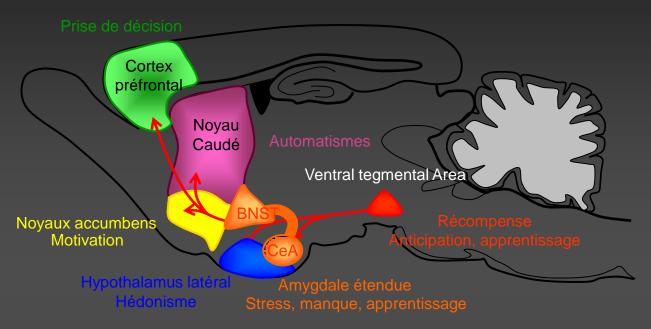

Dopamine: récompense-motivation-action D1/D2/D3 – Transporteur de la dopamine

Acetylcholine: récompense/vigilance NAcR alpha3/4 et beta2/3

GABA/Glu: excitation/inhibition GABAA-GABAB-NMDA-AMPA

Koob and Volkow Neuropsychopharmacology 2009

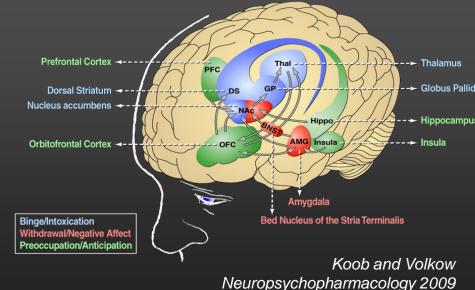
Systèmes modulateurs


Delta et kappa opioïdes: humeur

Sérotonine: humeur

5HT1 à 7

Norepinephrine: stress Adr alpha et beta

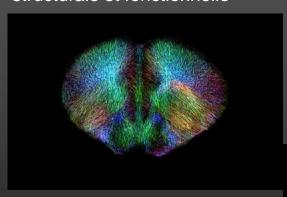

4. Toxicomanie

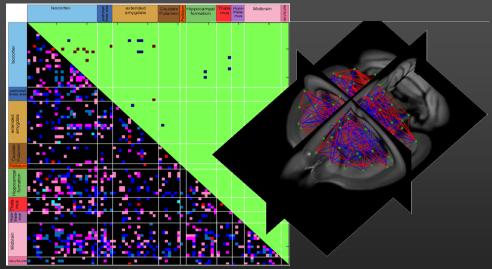
Le cerveau s'adapte

Récompense altérée - tolérance Stress augmenté – humeur négative Koob & Le Moal Nat Neurosci 2005 /the dark side

Motivation biaisée vers les drogues Automatismes renforcés Contrôles inhibiteurs affaiblis Everitt & Robbins Nat Neurosci 2005/the habits

En cours-modèles, cibles, approches


Visualiser le connectome fonctionnel par imagerie non-invasive


"Translation" chez l'homme?

Imagerie par Résonance magnétique structurale et fonctionnelle

Harsan et al, PNAS, 2013 Mechling et al., Neurolmage, 2014 L'absence de récepteur mu remodèle l'activité cérébrale L'activité des circuits récompense/aversopn est modifiée Une signature du récepteur à l'échelle du cerveau entier

Mechling, Harsan Kieffer

Les traitements aujourd'hui et demain

Traitements en cours ou réduction des risques

Loin de la sophistication de notre compréhension des mécanismes

Drug	Approved medication
Nicotine	Nicotine replacement
	therapies (NRT), Bupropion, Varenicline
Alcoholism	Naltrexone, Acamprosate, Disulfiram
Opiates	Buprenorprhine, Methadone, Naltrexone, Naloxone

Volkow & Skolnick Neuropsychopharmacology 2012

Action sur la cible directe

- -opiacés naltrexone/naloxone methadone/buprenorphine (Mu)
- -nicotine varenicline (NAcR)
- -alcool acamprosate (NMDA-?)

Nouveautés dans la formulation – croisement des médications

- -opiacés: naltrexone diffusion lente
- -nicotine: varenicline/bupropion (antidepresseur)
- -cocaine: buprenorphine/naltrexone (Mu)
- -alcool: naltrexone (Mu)

Binge

Intoxication

Le cycle vicieux

de l'addiction

Manque Recherçhe de drogue

Recherche préclinique: les modèles animaux

Koob and Volkow Neuropsychopharmacology 2009

Table 2 Animal Laborator	y Mode l s of The Different	Stages of The Addiction Cy	/cle
--------------------------	------------------------------------	----------------------------	------

Stage of addiction cycle	Animal models	Reference Sevrage Etat aversif
Binge/Intoxication	Drug/alcohol self-administration	Collins et al, 1984
	Conditioned place preference	Sanchis-Segura and Spanagel, 2006
	Brain stimulation reward thresholds	Kornetsky and Bain, 1990
Withdrawal/	Anxiety-like responses	Sarnyai et al, 1995; Schulteis et al, 1998; Baldwin et al, 1991
Negative affect		
	Conditioned place aversion	Tzschentke, 1998
	Elevated reward thresholds	Markou et al, 1998
	Increased motivation for self-administration in	Ahmed and Koob, 1998; Ahmed et al, 2000; Roberts et al, 2000; Kitamura et al, 2006;
	dependent animals	O'Dell and Koob, 2007; Tomatzky and Miczek, 2000; Ahmed and Koob, 1998;
		Deroche-Gamonet et al, 2004; Vanderschuren and Everitt, 2004
Preoccupation/	Drug-induced reinstatement	Sanchis-Segura and Spanagel, 2006
Anticipation		
	Cue-induced reinstatement	Sanchis-Segura and Spanagel, 2006
	Stress-induced reinstatement	Sanchis-Segura and Spanagel, 2006

Taken with permission from Koob et al (2009).

Evidence for addiction-like behavior in the rat - Gamonet, Belin, Piazza Science 2004
Towards Diagnostic criteria for drug addiction - Rauscent & Belin Biol Psy 2015

Les traitements aujourd'hui et demain

Les pistes de la recherche animale – voies classiques

Nouvelles molécules sur cibles classiques: antagoniste mu GSK1521498 (Rechute alcool et cocaine) *Guliano et al Neuropsychopharm 2012*

Target	Effects in animal models
Glutamate	
AMPA	Antagonists inhibit relapse
NMDA	Partial agonists facilitate
	extinction (d-cycloserine)
mGluR2/3	Agonists inhibit relapse
mGluR5	Negative allosteric
	modulators inhibit drug
	intake and relapse
Cysteine-glutamate	Upregulation prevents
exchanger ^a	relapse and facilitates
01.74	extinction (N-acetylcysteine)
GLT1	Upregulation prevents
	relapse (ceftriaxone)
GABA	Enhancera (tanirameta
GADA	Enhancers (topiramate, GVG, baclofen)
	GVG, baciorarij
Dopamine	
DAT	Blockers interfere with drug
	intake (stimulants,
	bupropion)
D3R	Antagonists inhibit relapse
	(buspirone ^b)
Serotonin	
5HT2A	Antogonista interfera with
UNIZA	Antagonists interfere with cue-induced relapse
5HT2C	Agonists decrease drug
311120	intake
	II ICENO

Volkow & Skolnick Neuropsychopharmacology 2012

Nicotine	
Alpha 5	Partial agonists may be
	beneficial in nicotine
	treatment
Beta 4	Partial agonist interferes with
	alcohol intake
Cannabinoids	
Anatgonists	Interfere with drug use
Agonists	Decrease withdrawal
9	(marinol)
FAAH inhibitors	Prevents reinstatement
Onicida	
Opioids	l-todoro with dovo intoko
Antagonists/agonists	Interfere with drug intake
	(buprenorphine ^a)
Kappa antagonists	Interfere with stress-induced
	relapse
Peptides	
Orexin antagonists	Interfere with drug
Oloxiii di nagoriiote	conditioning
CRF antagonists	Interferes with stress-induced
	relapse

Les traitements aujourd'hui et demain

Les pistes – une autre approche

Le bloquage de la reconsolidation

Reconsolidation: processus de mise à jour de la mémoire

Le rappel d'un évènement rend son souvenir transitoirement labile, puis re-stabilisation (synthèse protéique)

Agren T Brain Res Bull 2014

Traitement du stress post-traumatique:

Principe: bloquer la reconsolidation de l'expérience traumatique

Administration de propanolol (bloquage β2 adrénergique) pendant le rappel atténue la mémoire de l'évènement Brunet J Clin Psychopharm 2011

Addictions:

La toxicomanie est un apprentissage aberrant (Robbins & Everitt)

Principe de la reconsolidation applicable à l'expérience "drogue"

Recherche d'alcool, de cocaïne et de morphine atténuée chez les rongeurs

Maintenir une abstinence prolongée/prévenir la rechute

Milton & Everitt Eur J Neurosci 2010

Memory destabilisation at retrieval/reactivation

Consolidated drug memory (e.g. CS-cocaine): stable state

Memory restabilisation (protein synthesis - ZIF268; NMDA & ß-adrenoceptors)

Un premier essai clinique pilote réussi Lonergan et al in press – Equipe Alain Brunet, Douglas

Les défis

Désengagement de l'industrie pharmaceutique

Neurologie et psychiatrie: échecs de l'industrie pharmaceutique

- -nécessité d'avancées fondamentales
- -nécessité de biomarqueurs / stratification des patients (DSMV/Research Domain Criteria-NIMH)

Toxicomanie

- -le marché est considéré restreint
- -le marché est stigmatisé: lié à des comportements illicites
- -le patient n'est pas solvable
- -essais cliniques: le patient n'est pas fiable

1987-2008: 46 essais cliniques tabaggisme / 544 essais cancer du poumon (80% tabaggisme)

Aspects cliniques

- -le patient nie le besoin de traitement
- -le médecin: complexité de la situation clinique
- -co-morbidité psychiatrique: où est la cause?
- -les services de santé: prise en charge des patients est non prioritaire

Volkow & Skolnick Neuropsychopharm Rev 2012 Skolnick & Volkow Biol Psychiatry 2012 Lee et al BioMed Res International 2015 Rahman et al Frontiers Neurosci 2015

Pas une solution, mais des solutions

MERCI

